Recent insights into the biological action of heavy-ion radiation.
نویسنده
چکیده
Biological effectiveness varies with the linear energy transfer (LET) of ionizing radiation. During cancer therapy or long-term interplanetary manned explorations, humans are exposed to high-LET energetic heavy ions that inactivate cells more effectively than low-LET photons like X-rays and gamma-rays. Recent biological studies have illustrated that heavy ions overcome tumor radioresistance caused by Bcl-2 overexpression, p53 mutations and intratumor hypoxia, and possess antiangiogenic and antimetastatic potential. Compared with heavy ions alone, the combination with chemical agents (a Bcl-2 inhibitor HA14-1, an anticancer drug docetaxel, and a halogenated pyrimidine analogue 5-iodo-2'-deoxyuridine) or hyperthermia further enhances tumor cell killing. Beer, its certain constituents, or melatonin ameliorate heavy ion-induced damage to normal cells. In addition to effects in cells directly targeted with heavy ions, there is mounting evidence for nontargeted biological effects in cells that have not themselves been directly irradiated. The bystander effect of heavy ions manifests itself as the loss of clonogenic potential, a transient apoptotic response, delayed p53 phosphorylation, alterations in gene expression profiles, and the elevated frequency of gene mutations, micronuclei and chromosome aberrations, which arise in nonirradiated cells having received signals from irradiated cells. Proposed mediating mechanisms involve gap junctional intercellular communication, reactive oxygen species and nitric oxide. This paper reviews briefly the current knowledge of the biological effects of heavy-ion irradiation with a focus on recent findings regarding its potential benefits for therapeutic use as well as on the bystander effect.
منابع مشابه
The biological effects induced by high-charged and energy particles and its application in cancer therapy
The radiobiological effects of high atomic number and energy (HZE particles) ion beams are of interest for radioprotection in space and tumor radiotherapy. Space radiation mainly consists of heavy charged particles from protons to iron ions, which is distinct from common terrestrial forms of radiation. HZE particles pose a significant cancer risk to astronauts on prolonged space missions. With ...
متن کاملTrack detection on the cells exposed to high LET heavy-ions by CR-39 plastic and terminal deoxynucleotidyl transferase (TdT)
Background: The fatal effect of ionizing radiation on cells depends on Linear Energy Transfer (LET) level. The distribution of ionizing radiation is sparse and homogeneous for low LET radiations such as X or γ, but it is dense and concentrated for high LET radiation such as heavy-ions radiation. Material and Methods: Chinese hamster ovary cells (CHO-K1) were exposed to 4 Gy Fe-ion 2000 keV/...
متن کاملInduction of cancer stem-like cells in A549 cells after exposure to carbon ions and X-rays
Background: Cancer stem-like cells (CSCs) play a crucial role in the initiation, progression, and recurrence of cancer. Evidence indicates that the high linear energy transfer (LET) carbon ion beam is more effective against CSCs than the conventional X-ray beam. Carbon ion radiotherapy is considered as a promising cancer strategy, however, information about whether, or not, new CSCs are induced...
متن کاملEvaluation of variable relative biological effectiveness and the creation of homogenous biological dose in the tumor region in helium ion radiation to the V79 cell line
In radiation therapy, ions heavier than proton have more biological advantages than a proton beam. Recently, ion helium has been considered due to high linear energy transfer (LET) to the medium and a higher relative biological effect (RBE). To design the spread-out Bragg peak (SOBP) of biological dose for radiation with any type of ion, we need exact values of RBE, which is dependent to dose, ...
متن کاملImpact of Various Beam Parameters on Lateral Scattering in Proton and Carbon-ion Therapy
Background: In radiation therapy with ion beams, lateral distributions of absorbed dose in the tissue are important. Heavy ion therapy, such as carbon-ion therapy, is a novel technique of high-precision external radiotherapy which has advantages over proton therapy in terms of dose locality and biological effectiveness.Methods: In this study, we used Monte Carlo method-based Geant4 toolkit to s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of radiation research
دوره 50 1 شماره
صفحات -
تاریخ انتشار 2009